BILANGAN BULAT
Pengertian Bilangan Bulat
Bilangan bulat bukan berarti kumpulan atau himpunan bilangan yang bentuknya bulat, ya. Tapi, nilainya yang bulat. Bilangan bulat terdiri dari bilangan cacah dan bilangan bulat negatif. Himpunan bilangan bulat dalam matematika dilambangkan dengan Z. Lambang ini berasal dari bahasa Jerman, yaitu Zahlen yang berarti bilangan.
Baca juga: Pengertian & Rumus Menghitung Bruto, Netto, Tara
Nah, bilangan cacah sendiri merupakan himpunan bilangan yang terdiri dari bilangan nol dan bilangan bulat positif. Bilangan bulat positif bisa juga disebut sebagai bilangan asli, merupakan himpunan bilangan bulat yang bernilai positif. Sementara itu, bilangan bulat negatif merupakan himpunan bilangan bulat yang bernilai negatif.
pembagian bilangan bulat pada garis bilangan
Nah, bilangan asli terbagi lagi menjadi bilangan ganjil, genap, prima, dan komposit. Bilangan ganjil merupakan himpunan bilangan yang bukan kelipatan dua atau nilainya nggak habis jika dibagi 2. Kebalikannya, bilangan genap merupakan himpunan bilangan kelipatan 2 atau nilainya akan habis jika dibagi 2.
Contohnya nih, 8 merupakan bilangan genap karena kalo kita bagi dengan 2, nilainya akan habis atau nggak punya sisa. Beda lagi dengan 13. Coba, 13 bisa dibagi 2 nggak? Jawabannya bisa, tapi nilainya nggak habis. Berarti, 13 bukan kelipatan 2. Itu tandanya, 13 termasuk bilangan ganjil.
Bilangan ganjil = {..., -7, -5, -3, -1, 1, 3, 5, 7, 9, …}
Bilangan genap = {..., -6, -4, -2, 0, 2, 4, 6, 8, 10, …}
Lalu, bagaimana dengan bilangan prima dan komposit, ya?
Bilangan prima merupakan himpunan bilangan yang lebih besar dari 1 dan hanya bisa dibagi oleh 1 atau bilangan itu sendiri. Contohnya nih, 2 merupakan bilangan prima karena hanya bisa dibagi 1 dan bilangan itu sendiri, yaitu 2. Sedangkan, 4 bukan bilangan prima karena selain bisa dibagi 1 dan 4, 4 juga bisa dibagi 2. Contoh bilangan prima lainnya adalah sebagai berikut:
Bilangan prima = {2, 3, 5, 7, 11, 13, ...}
Nah, kalo bilangan yang nilainya lebih besar dari 1 dan bukan termasuk bilangan prima, berarti bilangan tersebut merupakan bilangan komposit. Contohnya, 4 tadi. Bilangan 4 lebih besar dari 1 dan bukan bilangan prima karena bisa dibagi 1, 2, dan 4. Jadi, 4 termasuk bilangan komposit. Contoh lainnya ada 6. Bilangan 6 juga termasuk bilangan komposit karena nilainya lebih dari 1 dan bukan bilangan prima (bisa dibagi 1, 2, 3, dan 6).
Bilangan komposit = {4, 6, 8, 9, 10, 12, ...}
Perlu kamu perhatikan ya, bilangan prima dan komposit juga bisa merupakan bilangan ganjil dan genap. Contohnya 3, selain termasuk bilangan prima, 3 juga termasuk bilangan ganjil. Tapi, nggak semua bilangan ganjil itu termasuk bilangan prima, lho!
Oke, sekarang, kamu udah tau ya apa itu bilangan bulat dan contoh-contohnya. Coba deh kamu tebak, himpunan bilangan di bawah ini termasuk ke dalam bilangan apa, ya?
Membandingkan Bilangan Bulat
Membandingkan bilangan bulat, berarti menentukan apakah suatu bilangan bulat memiliki nilai lebih besar, lebih kecil, atau sama dengan bilangan bulat yang lain. Dalam membandingkan bilangan bulat, kita bisa menuliskannya menggunakan lambang-lambang berikut ini:
Misalkan, a dan b merupakan bilangan bulat.
Jika a lebih besar dari b, maka bisa ditulis a > b
Jika a lebih kecil dari b, maka bisa ditulis a < b
Jika a sama dengan b, maka bisa ditulis a = b
Mengurutkan Bilangan Bulat
Mengurutkan bilangan bulat, berarti menuliskan bilangan bulat tersebut secara urut dari nilai terkecil ke nilai terbesar atau sebaliknya. Pada garis bilangan, semakin ke kanan letak suatu bilangan, maka nilainya akan semakin besar. Sebaliknya, semakin ke kiri letak suatu bilangan, nilainya akan semakin kecil.
contoh bilangan bulat positif dan negatif
Itu tandanya, kalo pada bilangan bulat negatif, semakin besar bilangannya, berarti akan semakin kecil ya nilainya. Sementara itu, pada bilangan bulat positif, semakin besar bilangannya, semakin besar juga nilainya.
Baca juga: Apa Saja Bagian-Bagian dari Properti Sudut?
Nah, supaya kamu semakin paham, coba kita kerjakan beberapa soal di bawah ini bersama-sama, ya!
Contoh Soal Bilangan Bulat
Urutkan bilangan-bilangan bulat berikut dari yang terkecil ke yang terbesar.
-3, 8, 13, -15, 1
Pembahasan:
Untuk memudahkan menjawab soal di atas, kamu harus ingat kalo bilangan positif nilainya selalu lebih besar dari bilangan negatif. Jadi, -3 dan -15 nilainya udah pasti lebih kecil dari 8, 13, dan 1, ya. Nah, karena yang diminta soal adalah urutan bilangan dari yang terkecil, berarti kita tentukan nih, antara -3 dan -15, bilangan mana yang nilainya paling kecil. Kamu bisa buat garis bilangannya supaya nggak bingung.
bilangan bulat
Ternyata, -15 terletak jauh di sebelah kiri -3. Itu tandanya, -15 lebih kecil dari -3, atau bisa kita tulis -15 < -3. Kalo kita buat urutannya, berarti begini:
-15 < -3 < … < … < ...
Kemudian, kita lihat pada garis bilangan, 13 terletak paling kanan. Berarti, 13 merupakan bilangan yang paling besar.
-15 < -3 < … < … < 13
Tinggal cari deh perbandingan antara 1 dan 8. Ternyata, 1 lebih kecil dari 8, berarti 1 < 8.
-15 < -3 < 1 < 8 < 13
Jadi, urutan bilangan bulat dari yang terkecil ke yang terbesarnya adalah -15, -3, 1, 8, 13.
0 komentar:
Posting Komentar